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Abstract
In this paper the Gaussian beams summation method, developed earlier for
acoustic wave propagation, is generalized and applied to electron motion in a
magnetic field and arbitrary potential in the case of shortwave approximation.
It provides semiclassical uniform approximation for Green’s function for
stationary two-dimensional quantum problems. The approximation is valid
near the caustics of an arbitrary geometrical structure and focal points. This
approach is tested for two special cases of waveguide excitation by a point
source for electron motion in a magnetic field with linear or parabolic potentials.

PACS numbers: 03.65.−w, 03.65.−sq, 04.40.−fa, 04.30.−db

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The recent development of semiclassical analysis has been demonstrated in various fields of
modern physics such as nano-structures [1, 2], electronic transport in mesoscopic systems
[3, 4], quantum chaotic dynamics of acoustic, optical and electronic resonators [5] and many
others. One of the examples of the application of semiclassical analysis is quantum electronic
waveguides and resonators. In modern mesoscopic electronic devices, two-dimensional
conductors with controllable geometric features are much smaller than inelastic scattering
length. Thus, electronic motion is ballistic (see [6–9]). Similar effects take place in nanotubes.
It is of particular interest when electron motion is controlled by an external magnetic field.

Constructions of semiclassical approximations of Green’s function inside electronic
waveguides or resonators have been a key problem in the analysis of electronic transport
problems in mesoscopic systems (see [6–9]). It is worth mentioning a semiclassical approach
in computing the density of eigenlevels for a resonator with chaotic dynamics. It is also based
on the WKB asymptotic expansion of Green’s function [5].
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However, the structure of classical trajectories for waveguides and resonators with rather
strong magnetic fields is getting very complicated and, owing to the presence of multiple
caustics and focal points, the semiclassical approximation is not valid. In this case, one of
the possibilities of tackling the problem of computing Green’s function is Maslov’s canonical
operator method. It was developed to solve the problems in the construction of semiclassical
asymptotics for elliptic PDEs and quantum mechanics equations [10]. The method gives a
cumbersome universal asymptotic construction depending on the geometrical and topological
properties of Lagrangian manifolds represented by families of by-characteristics in the phase
space. In some simple cases, it reduces the answer to local asymptotic expansions for wave
fields expressed via special functions of wave catastrophes, for example the Airy function for
smooth caustic and Piercy integral in the case of casp.

On the other hand, there exists an alternative method of the summation of Gaussian
beams (integral over Gaussian beams) which was developed in [11] for acoustic and later for
electromagnetic and elastic wave propagation [12]. The theoretical foundations of the method
are rather simple in comparison with Maslov’s canonical operator method. The Gaussian
beam as a localized asymptotic solution is always regular near the caustics or focal point.
Realization of the method does not require any knowledge about the geometrical properties
of caustics. Thus, in a general case, the method of summation of Gaussian beams gives
universal semiclassical uniform approximation for solutions to various problems of wave
propagation and quantum mechanics. This approximation is valid near the caustics or focal
points of an arbitrary geometric structure. The application of the method to the computations
of high-frequency acoustic and elastic wave fields was proved to be very efficient and robust
[12].

This method is convenient for constructing a semiclassical uniform approximation for
Green’s function for the interior of waveguides quantum stationary problems. But the
application of this method to the problems of electron motion in magnetic fields required a
generalization of the approach originally developed for acoustic wave propagation problems.
The first step in this direction has been done in [15], where a semiclassical analysis was
developed for electron motion inside a closed resonator in the presence of a homogeneous
magnetic field and arbitrary scalar potential.

In this paper using the basic techniques described in [11, 12] and in [15], we develop the
Gaussian beams summation method for electron motion in a magnetic field and arbitrary scalar
potential u(x) stationary problems to construct Green’s function semiclassical approximation
(electron spin effects are not taken into account). This approach has been tested for two
classical cases of separation of variables, namely

1

2m

{
(p̂1 + αx2)

2 + p̂2
2

}
G + e2x2G = EG + δ(x − x(0)), (1)

for linear potential (electric field with component e2), and

1

2m

{
(p̂1 + αx2)

2 + p̂2
2

}
G + β

x2
2

2
G = EG + δ(x − x(0)), (2)

for parabolic potential with parameter β > 0, where

x = (x1, x2), p̂1 = h̄

i

∂

∂x1
, p̂2 = h̄

i

∂

∂x2
, α = eB

c
,

with magnetic potential in the Landau gauge A = B(−x2, 0, 0), where δ(x) is the Dirac
delta function, e is the particle charge, c is the speed of light and h̄ is the Plank constant.
Both cases deal with electronic waveguide propagation excited by point source x(0) as their
solutions represent propagating waves confined to a strip formed by the interior between two
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turning lines or a turning line and caustics. A similar situation takes place for an acoustic
wave field of depth waveguide in the ocean acoustics made by local internal minimum of
the speed of wave propagation with respect to the depth coordinate (a waveguide without
reflecting boundaries). The corresponding exact mode decompositions for Green’s functions
are derived. Numerical results obtained by the Gaussian beams summation method were
tested against data computed by the exact mode decompositions. It is shown that for both
approaches, numerical results are in a very good agreement. However, it is necessary to
remark that the Gaussian beams summation method has a significant drawback. It is unable to
provide an accurate approximation for Green’s function near the turning line where E = u(x).

It is important to note that the Gaussian beam asymptotic solution used as the main tool
in the Gaussian beams summation method differs from the well-known quantum mechanics
and quantum field theory coherent states introduced earlier by Schrödinger and Glauber. Both
are different types of Gaussian wave packet solutions.

The paper is organized as follows. First, in section 2, a description of the boundary layer
semiclassical method used to construct a localized asymptotic solution of the Gaussian beam
in the presence of a magnetic field and a scalar potential is given. Subsequently, in section 3,
the techniques of the Gaussian beams summation method are presented. Finally, in section 4,
exact mode decompositions for Green’s functions for cases (1) and (2) are derived. Here, the
comparison of numerical results obtained by the Gaussian beams summation method and the
mode decompositions is discussed.

2. Electronic Gaussian beams

First, the basic steps of the ray method recurrence relations (see [13, 14]) are considered for
the stationary problem of Green’s function for the Schrödinger operator describing an electron
in the presence of a homogeneous magnetic field and arbitrary scalar potential

1

2m

(
p̂ − e

c
A

)2
G + u(x)G = EG + δ(x − x(0)). (3)

These results are used in the derivation of the electronic Gaussian beam asymptotic expansion.
A ray asymptotic solution is the principal part of the method of the summation of Gaussian
beams.

2.1. Ray asymptotic solutions

Consider the axial gauge of a magnetic field: A = B/2(−x2, x1, 0). The WKB ray solution
is sought in the form of formal asymptotic expansion with respect to small parameter h̄:

G(x, x(0)) = e
i
h̄
S(x)

+∞∑
j=0

Gj(x)(ih̄)j . (4)

Substituting this series into (3), and equating to zero the corresponding coefficients of
successive degrees of h̄, we obtain a recurrent system of equations which determines the
unknown S(x) and Gj(x). Classical action S(x) satisfies the Hamilton–Jacobi equation

〈∇S,∇S〉 + αx2Sx1 − αx1Sx2 +
α2

4

(
x2

1 + x2
2

) − 2m(E − u(x)) = 0, (5)

where symbol 〈, 〉 means the scalar product and amplitudes Gj satisfy the transport equations

2〈∇S,∇Gj 〉 + α
(
x2Gjx1 − x1Gjx2

)
+ �SGj = �Gj−1, G−1 = 0.
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Taking into account the method of by-characteristics [10] and solving the corresponding
Hamilton system

ẋ = Hp, ṗ = −Hx, x = (x1, x2), p = (p1, p2),

with the Hamiltonian

H = 1

2m

(
p − e

c
A

)
+ u(x) − E (6)

and initial conditions

x|t=0 = x(0), p|t=0 = 1√
2m(E − u(x(0)))

(cos γ, sin γ )T ,

we obtain the classical trajectories in the phase space R4
x,p in the form of functions

x = x(t, γ ), p = p(t, γ ), parametrized by the so-called ray coordinates, time and polar
angle t, γ . In the coordinate space R2

x , the classical trajectories (rays) connect x and x(0). It
yields solution S in the form of integral

S =
∫ x

x(0)

√
2m(E − u(x(s)) ds +

e

c

∫ x

x(0)

A dx

=
∫ x

x(0)

(√
2m(E − u(x(s))

(
ẋ2

1 + ẋ2
2

)
+

α

2
(−x2ẋ1 + x1ẋ2)

)
dt. (7)

The transport equations may be written as follows:

2m
dGj

dt
+ �SGj = �Gj−1,

where d
dt

is a derivative with respect to the Hamiltonian system. Following [10], we obtain

�S = m
d

dt
ln J (t, γ ), J (t, γ ) =

∣∣∣∣∂(x1, x2)

∂(t, γ )

∣∣∣∣,
where J is geometrical spreading. Now the transport equation can be integrated:

Gj(x, x(0)) =
√

J (0, γ )

J (t, γ )

(
gj (γ ) +

1

2m

∫ t

0
�Gj−1 dτ

)
, (8)

where gj (γ ) are constants of integration. These constants should be determined by the
boundary layer method (see [14, chapter 6]) matching the outer asymptotic expansion (8) with
a solution constructed in an asymptotically small neighbourhood of the point source x(0).

Finally, taking into account a finite number of trajectories connecting x and x(0), up to the
leading order the ray asymptotic solution is given by

G(x, x(0)) =
∑

n

e
i
h̄
S(t (n),γ (n))−i π

2 μn

√
J (0, γ (n))

J (t (n), γ (n))
g0(γ

(n))(1 + O(h̄)), (9)

where μn is the Maslov index of the nth trajectory [10]. This solution is singular near the
caustics or focal points where J (t, γ ) = 0.

Here is an example of the WKB asymptotic expansion of Green’s function of an electron
in a magnetic field with u(x) = 0:

G =
∑
n=1,2

1

2
√

2πk|Jn|
e

i
h̄
Sn− iπ

4 − iπ
2 μn

1 + eimR2ωπ/h̄
(1 + O(k−1)), k =

√
2mE

h̄
� 1, (10)
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Figure 1. Family of classical trajectories for the problem of Green’s function of an electron in a
magnetic field with u(x) = 0 and x(0) = (0, 0).

where

S = mR2ω

2

( s

R
+ sin

s

R

)
, J = R sin

s

R
,

R =
√

2E/m

ω
, ω = eB

mc
, μ1 = 0, μ2 = 1,

where s is the arc length being chosen instead of t and measured along the trajectory from x(0).
This formula includes an infinite sum of multiple traversals of the circular orbits that is a sum
of geometrical progression. This WKB asymptotic expansion was constructed with the help
of the ray coordinates

x1 = R
[
sin

( s

R
− γ

)
+ sin γ

]
+ x

(0)
1 , x2 = R

[
cos

( s

R
− γ

)
− cos γ

]
+ x

(0)
2 .

The property of the solution being singular at

E = El = h̄ω
(
l + 1

2

)
, l ∈ N,

gives the quantization of the energy spectrum (Landau levels). This solution is singular at
s = πνR, ν ∈ N (see figure 1). The set of singular points are the circle ν = (2n + 1) which
is a smooth caustic, and the focal point x(0), where ν = 2n (n ∈ N).

Frequently, in practice while applying the ray asymptotic method, the structure of classical
trajectories looks very complicated. This is due to the presence of caustics and focal points.
This situation takes place for a charged particle moving in strong magnetic fields. Thus, the
ray asymptotic expansion is not effective as it is not valid inside domains asymptotically close
to caustics and focal points.

As stated earlier, the method of Gaussian beams summation provides effective asymptotic
approximation valid near caustics and focal points. In the following section, a generalization
of the method is described for the wavefunction of electron motion in a magnetic field and
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arbitrary scalar potential. It gives analytical representation of Green’s function as an integral
over Gaussian beams.

2.2. Localized asymptotic solution—Gaussian beam

Let x0 = (x1(s), x2(s)) be a particle classical trajectory, where s is the arc length measured
along a trajectory. Consider the neighbourhood of the trajectory in terms of local coordinates
s, n, where n is the distance along the vector normal to the trajectory such that

x = x0(s) + en(s)n, (11)

where en(s) is the unit vector normal to the trajectory.
Following [14], we apply the asymptotic boundary-layer method to the homogeneous

Schrödinger equation (3). We assume that the width of the boundary layer is determined by
|n, ṅ| = O(

√
h̄) as h̄ → 0. Introducing ν = n/

√
h̄ = O(1), we seek an asymptotic solution

to (3) in the form

ψ = e
i
h̄
(S0+S1n+(s)n2/2)

√
a(s)

+∞∑
j=0

ψj(s, ν)h̄j/2. (12)

Here S0(s), S1(s), (s) are coefficients of asymptotic expansion of S with respect to small n:

S = S0(s) + S1(s)n + (s)n2/2 + · · · .
Substituting this expansion into the Hamilton–Jacobi equation (5), we obtain

S0 =
∫ s

0

(
a(s) − α

2

(
x

(0)
1 γ1 + x

(0)
2 γ2

))
ds, S1 = α

2

(
x

(0)
1 γ2 − x

(0)
2 γ1

)
,

a(s) =
√

2m(E − u0(s)), u(x) = u0(s) + u1(s)n + u2(s)n
2 + · · · ,

and γi(s), i = 1, 2, are the Cartesian components of the vector en(s). The coefficient 

satisfies the Ricatti equation (see [13, 14])

̇ +
1

a
2 + ad = 0, (13)

where the symbol ̇ means the derivative with respect to s:

d(s) = u2

E − u0
+

u2
1

4(E − u0)2
− u1

ρ(E − u0)
− α

ρa
.

By means of the substitute  = a ż
z
, the Ricatti equation is reduced to

d

ds
(a(s)ż) + a(s)d(s)z = 0. (14)

It is worth remarking that the solution z(s) satisfies the so-called equation in variations
which describes a family of trajectories close to x0(s), that is, z(s) = n(s), and these trajectories
are given by

x(s) = x0(s) + n(s) en(s).

The equation in variations may be written as the following Hamiltonian system:

ż = p/a(s), ṗ = −a(s)d(s)z, (15)

with the Hamiltonian function

H2(s, p, z) = p2

2a(s)
+

a(s)d(s)

2
z2.

6
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For the zero-order amplitude, we have the transport equation

2m
dψ0

dt
+ �Sψ0 = 0.

Taking into account the expansion

ψ0 = ψ
(0)
0 + ψ

(1)
0 n + O(n2),

for the leading term, we obtain ODE for ψ
(0)
0 :

dψ
(0)
0

ds
+

1

2a

(
dṠ0

ds
+  − S1

ρ

)
ψ

(0)
0 = 0

and

dψ
(0)
0

ds
+

1

2a

(
da

ds
+

aż

z

)
ψ

(0)
0 = 0.

Its solution is ψ
(0)
0 = const√

az
.

It is very important that solutions of the system of equations in variations (15) may be
chosen complex z(s) = z1(s) + iz2(s) and p(s) = p1(s) + ip2(s), where z1(s), p1(s) and
z2(s), p2(s) are, respectively, the real and linear independent solutions to (15). This leads to
Im((s)) > 0 for 0 < s < s∗, thus providing asymptotic localization of the solution ψ . The
localization and regularity near the caustics are due to the fact that

Im((s)) = Im

(
a
ż

z

)
= a

z1ż2 − ż1z2

z2
1 + z2

2

= const

z2
1 + z2

2

.

Thus, we obtain that to the leading order the Gaussian beam asymptotic solution is given by

ψ = e
i
h̄
(S0(s)+S1(s)n+ p(s)

2z(s)
n2) 1√

a(s)z(s)
(1 + O(h̄1/2)). (16)

It is always regular near caustics and focal points regardless of its complicated geometrical
structure. However, it is clear that this asymptotic solution is not valid near potential turning
lines where a(s) vanishes.

3. Asymptotic expansion of Green’s function for an electron in a magnetic field in the
form of an integral over Gaussian beams

The theory of the method of Gaussian beams summation was originally developed for acoustic
wave fields. For electron motion in a magnetic field, general points of theoretical basis of
the method are the same. In this section, the desired uniform approximation of an electron
wavefunction valid near caustics and focal points is described briefly. For electron Green’s
function stationary problem (3), two types of approximations are being discussed.

The first one is the integral over all Gaussian beams irradiated from the point source x(0):

G(x, x(0), E) =
∫ 2π

0
e

i
h̄
(S0(s)+S1(s)n+ p(s)

2z(s)
n2) A(γ ) dγ√

a(s)z(s)
(1 + O(h̄1/2)), (17)

where A(γ ) is an unknown amplitude. This integral can be evaluated numerically, and the
corresponding algorithm is very simple. The rectangular or Simpson formulae may be used.
The basic idea of the approximation is that the total fan of classical trajectories corresponding
to the discrete set of an angular parameter γ ∈ [0, 2π ] must stretch for the values of s as large
as possible, thus securing total and uniform covering of the observation point x. For each
trajectory fixed by a value of γ , a set of local coordinates (s, n) (see (11)) of the observation

7
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point x has to be determined. Then, all the components of the Gaussian beam asymptotic
solution (16), that is, S0(s), S1(s), a(s), z(s), p(s), must be computed for various values of
the discrete set of γ ∈ [0, 2π ]. The parameter w is used in the construction of the complex
solution z(s), p(s) in such a way that(

z(s)

p(s)

)
=

(
z1(s)

p1(s)

)
+ iw

(
z2(s)

p2(s)

)

where the real z1(s), p1(s), z2(s), p2(s) satisfy (15) and the following initial conditions:(
z1(0)

p1(0)

)
=

(
1
0

)
,

(
z2(0)

p2(0)

)
=

(
0
1

)
.

The parameter w determines the width of the localized Gaussian beams. The thinner
the Gaussian beams, the more accurate an approximation for a solution may be obtained
numerically (see [11, 12]).

The amplitude A(γ ) is to be determined by the steepest descent method (see [11, 12]).
In the region close to x(0), where the structure of electron classical trajectories is regular away
from the caustics, the approximation (17) must coincide with the ray asymptotic solution

G(x, x(0), E) = e
i
h̄
S

√
J (0, γ0)

J (s, γ0)
g0(γ0)(1 + O(h̄)), (18)

where γ0 determines the trajectory connecting x(0) and x. Taking into account the fact that
only an asymptotically small (h̄ → 0) neighbourhood of trajectories, close to the trajectory
with γ = γ0, contributes to the integral (17), we may use in this neighbourhood the following
approximations:

S = S0 + S1n +
1

2

p̃(s)

z̃(s)
n2 + O(n3), n = z̃(s)(γ − γ0) + O((γ − γ0)

2),

where real z̃(s) and p̃(s) satisfy (15) with initial conditions z̃(0) = 0 and p̃(0) = a(0)

respectively. Thus, to the leading order we obtain

G(x, x(0), E) = A(γ0)√
a(s)z(s)

∫ �1

−�1

exp

(
− i

2h̄

a(0)z̃(s)

z(s)
(γ − γ0)

2

)
+ · · ·

= A(γ0)√
a(s)z̃(s)

√
2πh̄

a(0)
e−iπ/4,

where �1 is a positive constant. Since J (s, γ0) = a(s)z̃(s), matching the leading term for
G(x, x(0), E) with (18) leads to

A(γ0) = eiπ/4

2πh̄
g0(γ0)

√
J (0, γ0)a(0).

The second type of approximation for electron Green’s function problem (3) combines a
contribution of ray asymptotic solutions computed for trajectories arriving at x, which are not
effected by caustics (their J (t, γ ) does not vanish), and a Gaussian beam integral performed
in the finite interval of γ ∈ [γ0 − �2, γ0 + �2] representing trajectories tangent to caustics

G(x, x(0), E) =
∑

n

e
i
h̄
S(t (n),γ (n))−i π

2 μn

√
J (0, γ (n))

J (t (n), γ (n))
g0(γ

(n))(1 + O(h̄))

+
∫ γ0+�2

γ0−�2

e
i
h̄
(S0(s)+S1(s)n+ p(s)

2z(s)
n2) A(γ ) dγ√

a(s)z(s)
(1 + O(h̄1/2)). (19)

8
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Here, γ0 determines the trajectory connecting x(0) and x, and corresponding J (t, γ0)

vanishes as x close to caustics. The positive constant �2 must be chosen in such a way that the
corresponding dense fan of trajectories totally covers the observation point x. However, it is
worth remarking that although the corresponding numerical algorithm is faster than the code
for the previous case, its structure is considerably more complicated logically. This fact takes
place due to the complex behaviour of the classical trajectories of an electron in a magnetic
field with caustics and focal points (see figures 3 and 7).

4. Numerical tests of Gaussian beams summation for electronic waveguide motion in a
magnetic field

In this section, the method of Gaussian beams summation for electronic motion in magnetic
field is tested for two special cases (1) and (2). For both cases owing to separation variables,
Green’s function is represented by exact mode decomposition. This gives the possibility of
comparing numerical results obtained by two independent methods and, thus, determining
a region of applicability of the Gaussian beams summation method, its advantages and
drawbacks.

First, consider the case of an electron in magnetic and electric fields (1). Let m = 1, and
let us rewrite this problem as follows:(

−� − 2iα

h̄
x2

∂

∂x1
+

α2x2
2

h̄2 − 2e2x2

h̄2 − k2

)
G(x, x(0), E) = δ(x − x(0)), (20)

where the wave number is given by k =
√

2E
h̄

. The solution G(x, x(0), E) is sought in the form
of a Fourier integral

G(x1, x2, x(0), E) = 1

2π

∫ +∞

−∞
e−ik1x1G̃(k1, x2, x(0), E) dk1, (21)

where G̃(k1, x2, x(0), E) is the fundamental solution to(
− ∂2

∂x2
2

− 2k1x2α

h̄
+

α2x2
2

h̄2 + k2
1 − 2e2x2

h̄2 − k2

)
G̃(k1, x2, x(0), E) = δ

(
x2 − x

(0)
2

)
.

Its Fourier series with respect to corresponding eigenfunctions is given by

G̃(k1, x2, x(0), E) =
√

h̄

α

∞∑
n=0

�n(x2, k1)�n

(
x

(0)
2 , k1

)
2n + 1 − �(k1)

,

where

�(k1) = h̄

α

(
k2 + 2

k1e2

h̄α
+

e2
2

h̄2α2

)
,

�n(x2, k1) = φn

(
x2

√
α

h̄
−

(
h̄

α

)3/2(
αk1

h̄
+

e2

h̄2

))
.

Here, φn(x) are Hermitian functions φn(x) = e−x2/2Hn(x) with Hermitian polynomials Hn(x).
Taking into account the fact that the contour of integration in (21) is shifted into the complex
plane of k1 shown in figure 2(a), the Fourier integral for G(x, x(0), E) can be calculated as a
sum of residues in the poles

k
(n)
1 =

(
(2n + 1)

α

h̄
− k2 − e2

2

h̄2α2

)
h̄α

2e2
.
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Imk1

Rek1

(a) (b)
Im k1

Re k1

Figure 2. The poles and the integration contours in the complex plane k1 for the Fourier integral
of Green’s function. (a) electron in the magnetic and electric fields and (b) electron in an magnetic
field and parabolic potential.
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Figure 3. The structure of the classical trajectories of an electronic waveguide in magnetic and
electric fields.

Thus, we obtain

G(x, x(0), E) = i
√

h̄
α3/2

2e2

∞∑
n=0

e−ik(n)
1 x1�n

(
x2, k

(n)
1

)
�n

(
x

(0)
2 , k

(n)
1

)
. (22)

This formula describes Green’s function presentation as a sum of propagating modes inside
a waveguide above a turning line (line C is given by E = u(x) = e2x2) and between two
external caustic lines (see figure 3). This waveguide propagation to the right from the source
(x(0) = (0, 0)) takes place due to the presence of a magnetic field. On the left side of the
source, Green’s function decays exponentially. Smooth caustic lines and focal points are seen
clearly inside the waveguide. We observe three types of zones separated by caustics since at
any observation point we have six incoming trajectories (the most dense zone), then four and
finally two (less dense zone). In figures 4 and 5, the values of |G(x, x(0), E)|2/h̄ at the points
of vertical cuts A and B are presented. These data were computed by means of the Gaussian
summation (17) and the mode decomposition (22) for the following values of parameters:
α = 2.5, e2 = 1, E = 1, h̄ = 0.05, w = 2. The vertical cut A goes through the focal point.
Both graphs show a good agreement. Discretizing the integral (17), 128 Gaussian beams were

10
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Figure 4. The values of |G(x, x(0), E)|2 at the points of vertical cut A for an electronic
waveguide in magnetic and electric fields (data 1—Gaussian beams summation and data 2—mode
decomposition).
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Figure 5. The values of |G(x, x(0), E)|2 at the points of vertical cut B for an electronic
waveguide in magnetic and electric fields (data 1—Gaussian beams summation and data 2—mode
decomposition).

used. Approximation (19) is also effective in this case. It provides the same order of error
compared with (22).

Consider the second case of electron motion in a magnetic field and parabolic potential
(2). Using the same notations, let us rewrite this problem as follows:

(
−� − 2iα

h̄
x2

∂

∂x1
+

α2x2
2

h̄2 +
βx2

2

h̄2 − k2

)
G(x, x(0), E) = δ(x − x(0)). (23)
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Figure 6. The structure of the classical trajectories of an electronic waveguide in a magnetic field
and parabolic potential.

The solution G(x, x(0), E) is sought in the form of Fourier integral (21), where G̃(k1, x2,

x(0), E) is the fundamental solution of(
− ∂2

∂x2
2

− 2k1x2α

h̄
+

α2x2
2

h̄2 + k2
1 +

βx2
2

h̄2 − k2

)
G̃(k1, x2, x(0), E) = δ

(
x2 − x

(0)
2

)
.

Its Fourier series with respect to the corresponding eigenfunctions is given by

G̃(k1, x2, x(0), E) =
√

μ

1 − (
α
μh̄

)2

∞∑
n=0

�n(x2, k1)�n

(
x

(0)
2 , k1

)
k2

1 − (
k

(n)
1

)2 ,

where

k
(n)
1 =

√
α2 + β

β

√
k2 − μ(2n + 1),

�n(x2, k1) = φn

(
x2

√
μ − αk1

h̄μ3/2
)

)
, μ =

√
α2 + β

h̄
.

Taking into account the fact that the contour of integration in (21) in the complex plane
of k1 is chosen in a way as shown in figure 2(b), the Fourier integral for G(x, x(0), E) can be
calculated as a sum of residues in the poles k

(n)
1 leading to

G(x, x(0), E) = i

2

√
μ

1 − (
α
μh̄

)2

∞∑
n=0

eik(n)
1 |x1|�n

(
x2, k

(n)
1

)�n

(
x

(0)
2 , k

(n)
1

)
k

(n)
1

. (24)

This is Green’s function presentation described as a sum of propagating modes inside a
waveguide between the two turning lines B, C

(
E = u(x) = βx2

2

/
2
)

and confined by two
external caustic lines (see figure 6). This waveguide propagation takes place to the right and
left from the source (x(0) = (0, 0)). The structure of trajectories is symmetric with respect
to x1 = 0. Thus, only the right part of the picture is chosen. In figure 7, the values of
|G(x, x(0), E)|2 at the points of vertical cut A (see figure 6) are presented. These data were
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Figure 7. The values of |G(x, x(0), E)|2 at the points of vertical cut A for an electronic waveguide
in a magnetic field and parabolic potential (data 1—Gaussian beams summation and data 2—mode
decomposition).

computed by means of the Gaussian summation (17) and the mode decomposition (22) for
the following values of parameters: α = 2, β = 1, E = 1, h̄ = 0.05, w = 2. Both graphs
again show a good agreement. Discretizing the integral (17), 128 Gaussian beams were used.
Application of (19) in this case seems to be ineffective as the structure of the trajectories looks
very complicated.

It is worth remarking that in both cases shown in figures 3 and 6, the electronic waveguide
propagation is clearly seen to be isolated from the potential turning lines (line C in figure 3
and lines B, C in figure 6) where the Gaussian beams approximation is not valid.

5. Conclusion

Using the basic steps of the techniques of Gaussian beams summation developed for acoustic
wave propagation in the case of shortwave approximation, this method was generalized and
applied for electron motion in a magnetic field and arbitrary potential u(x). It provides
semiclassical uniform approximation for Green’s function in stationary problems describing
electronic wave propagation. This approximation was tested for two special cases of waveguide
excitation by a point source for electron motion in a magnetic field for linear and parabolic
potentials. The asymptotic approximations for Green’s functions computed by the Gaussian
beams summation method were found to be in a very good agreement with data obtained by
the separation of variables (exact mode decomposition of Green’s function). Thus, the method
of Gaussian beams summation is efficient for the construction of the WKB approximation
describing electron motion in a magnetic field and any scalar potential. It may be applied
to the problems of electronic waveguide transport through resonators. However, there is a
drawback of the method. The corresponding asymptotic approximation is not valid near the
potential turning line as a single Gaussian beam asymptotic solution breaks down in this case.
This fact may be considered as a future prospect towards the generalization of the Gaussian
beam summation method which is uniformly valid near the potential turning line.
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